

Abstract—We introduce the idea of constructing hypothetical

evolutionary trees using an incremental algorithm that inserts species
one-by-one into the current evolutionary tree. The method of
incremental phylogenetics by repeated insertions lead to an algorithm
that can be used on DNA, RNA and amino acid sequences.
According to experimental results on both synthetic and biological
data, the new algorithm generates more accurate evolutionary trees
than the UPGMA and the Neighbor Joining algorithms.

Keywords—Amino acid, DNA, evolution, phylogenetic tree.

I. INTRODUCTION
URRENT phylogenetic tree construction
algorithms[1]-[3], [6], [10], [12] and [14] are not

incremental and have to be rerun from the beginning whenever
a new species is added to the database. Moreover, a rerun from
the beginning is necessary even if the new species is aligned
with the already used species. In this paper, we develop an
incremental algorithm that inserts new species one-by-one into
a growing phylogenetic tree.

Our inspiration for such an incremental phylogenetic
algorithm is the way biologists usually classify any newly
discovered species. Starting from the root node of the existing
classification tree, the newly discovered species is compared
with existing species and always an appropriate branch is
chosen to go one level down in the classification hierarchy.
Eventually we reach one of the existing species, which is the
closest relative. It is next to that nearest relative where the new
species is normally inserted.

Our aim is to develop a computer algorithm that uses the
above paradigm but works with both DNA sequences and
proteins. As the genomes of a growing number of species are
sequenced and become part of DNA and protein databases [5],
[13], molecular biology increasingly augments, although not
completely replaces, morphological considerations.

Reliable phylogenetic tree constructions are needed for a
diverse set of studies, including theoretical studies on the rate
of evolution in various phyla [11] and applied studies aimed at
developing medical diagnosis methods [7] and pharmaceutical
development. Our algorithm has two main benefits compared
to previous algorithms:

Peter Z. Revesz is with the Department of Computer Science and
Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
(revesz@cse.unl.edu).

Zhiqiang Li is with the Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Lincoln, NE 68588, USA (zli@cse.unl.edu).

1) Faster because it can be used incrementally if the new

sequence is aligned with the other sequences.
2) Generates more accurate phylogenetic trees as indicated

by the computer experiments presented in Section 4.

This paper is organized as follows. Section II presents some
related work. Section III describes the incremental
phylogenetic tree algorithm. Section IV presents some
experimental results. Finally Section V gives some
conclusions and directions for future work.

II. RELATED WORK
The UPGMA [11] and the Neighbor Joining (NJ) [10]

algorithms are commonly used and familiar to most
users. The maximum likelihood method is also well known,
although it seems less frequently used that UPGMA and
Neighbor Joining in practice because it requires more
computational time. All of these algorithms are reviewed in
textbooks, such as [1]-[3].

Revesz [6] introduced the Common Mutations Similarity
Matrix algorithm, which has O(n3) time complexity, where n
is the number of sequences. We briefly review this algorithm
as a related work, which will also be used in the experimental
results section of this paper. Table 1 below shows seven DNA
sequences, S1…S7, each with a length fifteen nucleotides
displayed by groups of five nucleotides per column.

Table 1 Seven input DNA sequences and a common ancestor µ

S1 AGCTA CTAGT AATCA
S2 AGCTA CGAGT AATCA
S3 ATCCA CTAGT ACACT
S4 ATCCA CTAGT ATACT
S5 CGGTA TTTGT AAGCT
S6 CGGTT CATCA AATGC
S7 AGGTA CTTGA AATCC
µ AGCTA CTAGT AATCT

Let Si[k] denote the kth nucleotide of Si. The Hamming
distance between two DNA sequences Si and Sj each with
length n, denoted δ (Si, Sj), is defined as the number of
corresponding nucleotide pairs that are different, that is, Σ1 ≤
k ≤ n Si [k] ≠ Sj[k]. µ is the common ancestor of seven
sequences.

Evolutionary tree construction algorithms generally start

Incremental Phylogenetics by Repeated
Insertions: An Evolutionary Tree Algorithm

Peter Z. Revesz, Zhiqiang Li

C

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 148

from a Hamming distance matrix to recursively combine pairs
of sequences (rows and columns) until only a single combined
sequence remains. For example, the UPGMA (unweighted
pair group method with arithmetic mean) [12] method would
always search for the closest pairs to combine. When several
pairs are equally distant, then an arbitrary choice is made. In
this case, the closest pairs are S1 and S2 and S3 and S4
because δ (S1, S2) = 1 and δ (S3, S4) = 1. The Neighbor
Joining [10] method is a more sophisticated and commonly
used method that is also based on distance matrices.

Instead of distance matrices, Revesz [6] introduced a
common mutations similarity matrix (CMSM). The motivation
behind looking for common mutations is that in practice rare
but shared features, such as rare mutations, often provide
useful markers of similarity among a set of closely related
items. Moreover, if mutations are rare, then it may be more
efficient to count their occurrences than finding the Hamming
distances for long sequences. Assuming that the seven DNA
sequences in Table 1 are related, we can find the most likely
common ancestor sequence, denoted µ, as the mode of each
column. If there is no most frequent nucleotide in a column,
then we arbitrarily chose one of the most frequent nucleotides
in it.

The Common Mutations Similarity Matrix (CMSM)
algorithm records for each pair of sequences the mutations that
they share in common with respect to a global average µ,
which is taken as the most likely common ancestor sequence.

Example 1. Given seven nucleotide sequences in Table 1

below (rows S1 to S7 where the sequences are displayed in
groups of five), the common ancestor sequence µ is calculated
in [6] as the most frequent in each column.
 Alternatively, if S1 to S7 are considered amino acid
sequences where A, C, G and T now stand for the amino acids
Alanine, Cysteine, Glycine and Threonine, respectively, then
the common ancestor sequence µ can be defined as in each
column as the amino acid x out of the set S of twenty amino
acids used in most proteins such that x is overall closest to the
set of amino acids in that column. We make this statement
more precise below using as an example the PAM250 amino
acid similarity matrix. Let

PAM250[AminoAcid1,AminoAcid2] = a (1)

denotes that AminoAcid1 and AminoAcid2 have a similarity
score of a. For example, PAM250 [A, G] = 1 means that
Alanine and Glycine are slightly similar to each other. Then
for the ith column,

µ 𝑖 = 𝑥 ∈ 𝑆 (2)
such that

 𝑃𝐴𝑀250[𝑆𝑖 𝑗 , 𝑥]!
!!! (3)

is maximum.

For example, we can see that the value of µ[1] changed

from A to C because C is the amino acid that is overall closest
to the each of the amino acids in the first column.

Table 2 Common ancestor µ from the new algorithm

S1 AGCTA CTAGT AATCA
S2 AGCTA CGAGT AATCA
S3 ATCCA CTAGT ACACT
S4 ATCCA CTAGT ATACT
S5 CGGTA TTTGT AAGCT
S6 CGGTT CATCA AATGC
S7 AGGTA CTTGA AATCC
µ CGCCA CTTGT AATCC

It can be assumed that in each sequence Si those amino

acids (or nucleotides) that do not match the corresponding
amino acid (or nucleotide) in µ were mutated at some point
during evolution. Intuitively, the more common mutations two
sequences Si and Sj share, the closer they are likely to be in an
evolutionary tree. For the above set of sequences, the common
mutations similarity matrix is shown in Table 3:

Table 3 Initial CMSM matrix

 S1 S2 S3 S4 S5 S6 S7
S1 0 4 2 2 1 1 2
S2 4 0 2 2 1 1 2
S3 2 2 0 5 1 0 1
S4 2 2 5 0 1 0 1
S5 1 1 1 1 0 2 2
S6 1 1 0 0 2 0 3
S7 2 2 1 1 2 3 0

According to the common mutations similarity matrix, the
closest pair of sequences is S3 and S4. Hence these will be
merged. When we merge two sequences Si and Sj, in the
merged sequence the kth element will be equal to the amino
acid (or nucleotide) in the two sequences if Si[k] = Sj[k] and
will be equal to µ[k] otherwise. Hence the matrix of sequences
will be updated as Table 4:

Table 4 The updated sequences

S1 AGCTA CTAGT AATCA
S2 AGCTA CGAGT AATCA
S34 ATCCA CTAGT AAACT
S5 CGGTA TTTGT AAGCT
S6 CGGTT CATCA AATGC
S7 AGGTA CTTGA AATCC
µ CGCCA CTTGT AATCC

 For example, since S3[12] = C ≠ T = S4[12], by the above
merging rule S34[12] = µ[12] = A.

After the merge, the common mutations matrix needs to be
recalculated. The merge does not change µ, but the entries in
the common mutations similarity matrix that are related to the
newly merged sequence S34 need to be calculated. The values
for S3 and S4 should be deleted. In this case, Table 5 shows
the updated common mutation matrix.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 149

Table 5 The updated CMSM matrix

 S1 S2 S34 S5 S6 S7
S1 0 4 2 1 1 2
S2 4 0 2 1 1 2
S34 2 2 0 1 0 1
S5 1 1 1 0 2 2
S6 1 1 0 2 0 3
S7 2 2 1 2 3 0

Now the closest pair is S1 and S2 with a value of 4 common

mutations. Hence those two will be merged next. The merging
will continue until there is only one sequence left. The CMSM
evolutionary tree algorithm can be summarized as shown in
Fig. 1.

ALGORITHM CMSM (S1…Sn, n)

 1 Form n clusters of sequences, each with a single sequence.
 2 Find the putative common ancestor µ of the sequences.
 3 Construct a graph T with a node for each n cluster and for µ.
 4 While (there is more than one cluster)
 5 Find the common mutations similarity matrix.
 6 If (exist distinct Si and Sj with some common mutations)
 7 Merge a closest distinct Si and Sj pair into a new
 8 cluster Sij and create a node for Sij.
 9 Connect the nodes for Si and Sj with parent node Sij.
10 Else
11 Connect the remaining clusters’ nodes to parent µ.
11 Return T.
12 Return T.

Fig. 1 The CMSM algorithm

Note: Alternatively, instead of only recording the values,

the actual set of common mutations can be put into each entry
of the common mutations similarity matrix. Clearly, the
cardinality of the sets in the second representation determines
the numerical values in the first representation.

III. INCREMENTAL PHYLOGENETICS BY REPEATED
INSERTIONS

A. A New Phylogenetic Tree Algorithm
Suppose that we have n number of amino acid sequences

S1, . . ., Sn. The sequences and the number n are the inputs to
the following algorithm that constructs an evolutionary tree by
repeated addition of new species that are represented by the
amino acid sequences. We call the new algorithm IPRI
(incremental phylogenetic by repeated insertions). A
pseudo-code of the IPRI algorithm is shown in Fig. 2.

In the algorithm, the closest pair can be found by minimum
Hamming distance if the sequences are DNA or RNA strings.
If the sequences are proteins, then the closest pair can be
found by using a PAM or a BLOSUM substitution matrix. The
running time is O(n2m) where m is the length of the sequences
because there are n insertions, and each insertion requires n
comparisons between two strings of length m.

ALGORITHM IPRI(S1…Sn, n)
 1 Create an independent node Nk for each sequence Sk.
 2 Let N = { Nk : 1 ≤ k ≤ n }
 3 Find the closest pair of nodes Nj and Nj.
 4 Create a tree T with root R, left child Ni and right child Nj.
 5 N = N \ {Ni, Nj}
 6 While (N is not empty)

 7 Find the closest pair of nodes Ni N and Mj T.
 8 If (Mj is not the root of T)
 9 P = parent of Mj.
 10 Delete P as a parent of Mj.
 11 Create a node R.
 12 Make P the parent of R.
 13 Make R the parent of Ni and Mj.
 14 Else
 15 Create a node R.
 16 Make R the parent of Ni and Mj.
 17 N = N \ {Ni}.
 18 Return T.
	

Fig. 2 The IPRI algorithm

The two major cases of insertion in the IPRI algorithm are
illustrated in Fig. 3 and Fig. 4, respectively.

Fig. 3 shows the case when the new node to be inserted,
node 3, is closest to the root node R. In this case, the IPRI
algorithm creates a new root called P and makes both the old
root R and the newly inserted node 3 the children of P.

Fig. 4 shows the case when the new node, again numbered
node 3, is closest to node 2. In this case, the IPRI algorithm
creates a new node P, which becomes a child of R, while both
nodes 2 and 3 become children of P. The case when node 3 is
closest to node 1 is a symmetric case, which is not illustrated
separately.

∈ ∈

Fig. 3 Case of insertion when the new node is closest to the root

R

Fig. 4 Case of insertion when the new node is closest to one of

the children of node R

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 150

IV. EXPERIMENTAL RESULTS

A. Experiments with Simulated Data
We compared the algorithms on simulated evolutionary data

as follows. We assumed that the original protein consists of a
chain of one thousand Alanine amino acids. We mutated this
original string two ways to generate to children. Both children
were generated by first randomly selecting one percent of the
amino acids. Then we changed the selected amino acids to one
of the twenty amino acids. That is, each of the selected amino
acids had a five percent chance of remaining A and ninety five
percent chance of changing into another amino acid, with five
percent chance of changing into C, five percent chance of
changing into D and so on.

Next both of the children were further mutated to generate
four grandchildren of the original protein. Then we general
additional levels of the tree so that after N levels we had 2N

leaves.
With the above process of evolutionary tree generation, two

siblings can be expected to differ from each other on twenty
amino acids. Two first cousins can be expected to differ from
each other on forty amino acids. Two seconds can be
expected to differ from each other on sixty amino acids, and
so on.

We ran ten tests on evolutionary trees with height four (and
sixteen leaves). We implemented the CMSM and the IPRA
algorithms in MATLAB. We used ClustalW2’s
implementation of the UPGMA and NJ algorithms. We chose
on the ClustalW2 website the default parameters, that is, a gap
open penalty of 10, a gap extension penalty of 0.2, and a
maximum gap distance of 5. The results can be summarized in
the Table 8, where ``Perfect’’ means that the reconstructed
tree is the same as the original evolutionary tree. When a
reconstructed tree had errors, we checked only how many of
the sibling pairs (SPs) were correctly handled.

Table 8 Experimental comparisons of the algorithms

Test CMSM IPRA UPGMA NJ
1 Perfect Perfect 8 SPs 8 SPs
2 Perfect Perfect 7 SPs 7 SPs
3 Perfect Perfect 7 SPs 7 SPs
4 Perfect Perfect 6 SPs 7 SPs
5 Perfect Perfect 7 SPs 7 SPs
6 Perfect Perfect 7 SPs 7 SPs
7 Perfect Perfect 8 SPs 8 SPs
8 Perfect Perfect 8 SPs 8 SPs
9 Perfect Perfect 6 SPs 6 SPs

10 Perfect Perfect 7 SPs 7 SPs

As an example, Fig. 5 shows the output of the IPRA
algorithm in case 4. As a comparison, Fig. 6 shows the output
of the UPGMA algorithm in the same case.

B. Experiments with Biological Data
In this section, we describe experiments with both

telomerase protein and telomerase RNA data.

Telomerase Protein Experiments: We investigated the
telomerase (TERT) protein family. Telomerase help protect
eukaryote chromosomes during duplication. From the website
http://telomerase.asu.edu we obtained 14 vertebrate telomerase
proteins as our input data. After alignment, the length of each
amino acid sequence was 1353.

The IPRI algorithm, which we implemented in MATLAB,
with the gap penalty value -1, gave the phylogenetic tree
shown in Fig. 7. Using ClustalW2 with gap penalty 10 and gap
extension 0.1 and the same telomerase RNA input data we
also generated the UPGMA and the Neighbor Joining
phylogenetic trees, which are shown in Fig. 8 and Fig. 9,
respectively. We also implemented the CMSM algorithm in
MATLAB. The CMSM phylogenetic tree is shown in Fig. 10.

Telomerase RNA Experiments: We also investigated the
telomerase RNA (TR) family. From the website
http://telomerase.asu.edu we obtained 42 vertebrate telomerase
RNA as our input data. After alignment, the length of each
RNA sequence was 741.

The IPRI algorithm gave the phylogenetic tree shown in
Fig. 11. Using ClustalW2 and the same telomerase input data
we obtained the UPGMA and the Neighbor Joining
phylogenetic trees shown in Fig. 12 and Fig. 13, respectively.
Finally, Fig. 14 shows the CMSM phylogenetic tree.

Fig. 6 Sample evolutionary tree reconstructed by the UPGMA

algorithm

Fig. 5 Sample evolutionary tree reconstructed by the IPRA

algorithm

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 151

Fig. 7 The IPRI phylogenetic tree based on vertebrate telomerase protein data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 152

Fig. 8 The UPGMA phylogenetic tree based on vertebrate telomerase protein data

Fig. 9 The Neighbor Joining phylogenetic tree based on vertebrate telomerase protein data

Fig. 10 The CMSM phylogenetic tree based on vertebrate telomerase protein data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 153

Fig. 11 The IPRI phylogenetic tree based on vertebrate telomerase RNA data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 154

Fig. 12 The UPGMA phylogenetic tree based on vertebrate telomerase RNA data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 155

Fig. 13 The NJ phylogenetic tree based on vertebrate telomerase RNA data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 156

Fig. 14 The CMSM phylogenetic tree based on vertebrate telomerase RNA data

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 157

C. Discussion of the Experimental Results
We divide the discussion into three parts. In the first part we

discuss the simulated data results, in the second part the
protein results, and in the third part the RNA results.

1. Simulated Data Results: The simulated data results

suggested that the new IPRA algorithm is an improvement
over the older UPGMA algorithm. For example, as can be
seen from Fig. 5 and Fig. 6, the IPRA algorithm has given
back the original evolutionary tree in both cases. On the other
hand, the UPGMA algorithm made a mistake in some of the
sibling pairs. In particular, the leaves 26 and 27 and the leaves
18 and 19 are not paired correctly. In addition, there are more
mistakes in grouping together cousin leaves. For example, the
sibling leaves 16 and 17 are paired correctly, but they are not
grouped correctly with their cousin leaves 18 and 19.

2. Telomerase Protein (TERT) Results: The UPGMA and
the Neighbor Joining phylogenetic trees suppose that
vertebrate evolution started with the mammals. According to
Fig. 8 and Fig. 9, the mammals started to diverge early on and
all the other non-mammal vertebrates are like one small
branch of the big mammalian evolutionary tree. In contrast,
the IPRI phylogenetic tree in Fig. 7 separates the mammals
and the non-mammals into two parallel branches. The CMSM
tree in Fig. 10 has the fish branch out first, then the reptiles
and the birds and finally the mammals. Hence the IPRI and the
CMSM phylogenetic trees are more realistic. However, it is
possible that the UPGMA and the Neighbor Joining results
would improve if we considered a larger set of proteins from
the same protein family.

3. Telomerase RNA (TR) Results: In this case, as shown
in Fig. 11, the IPRI algorithm followed well the accepted
evolutionary theory. In the IPRI algorithm, the fish is the
earliest vertebrate group that separates from the other
vertebrates, followed by the amphibians. The subtree with root
68 consists of all the mammals. In contrast, the UPGMA and
the Neighbor Joining phylogenetic trees still make the mistake
of assuming that mammals were the earliest vertebrate group.
Therefore the UPGMA and the Neighbor Joining phylogenetic
trees run completely counter to the accepted order of
vertebrate evolutionary history. Finally, the CMSM result was
also unrealistic because, for example, it put together in the
subtree rooted at node 75 some fish and various mice.

V. CONCLUSIONS AND FUTURE WORK
The new incremental phylogenetic tree algorithm has a

potential to improve the general phylogenetic trees and our
understanding of evolutionary history, as can be inferred based
on molecular biology. Generally, all phylogenetic tree
algorithms improve with greater data size both with the
number of species and in the length of the sequences. In the
future, we plan to study additional protein families and their
DNA and amino acid sequences. Finally, it would be
interesting to look at the evolution of biological vision in order
to learn from it ideas that may improve digital cameras [4].

REFERENCES
[1] D. Baum and S. Smith, Tree Thinking: An Introduction to Phylogenetic

Biology, Roberts and Company Publishers. 2012.
[2] B. G. Hall, Phylogenetic Trees Made Easy: A How to Manual, 4th

edition, Sinauer Associates, 2011.
[3] P. Lerney, M. Salemi, and A.-M Vandamme, editors. The Phylogenetic

Handbook: A Practical Approach to Phylogenetic Analysis and
Hypothesis Testing, 2nd edition, Cambridge University Press, 2009.

[4] Z. Li and P. Z. Revesz, “Bilinear and smooth hue transition
interpolation-based Bayer Filter designs for digital cameras,”
International Journal of Circuits, Systems and Signal Processing, 9,
211-221, 2015.

[5] P. Z. Revesz, Introduction to Databases: From Biological to
Spatio-Temporal, Springer, New York, 2010.

[6] P. Z. Revesz, “An algorithm for constructing hypothetical evolutionary
trees using common mutations similarity matrices,” Proc. 4th ACM
International Conference on Bioinformatics and Computational Biology,
ACM Press, Bethesda, MD, USA, September 2013, pp. 731-734.

[7] P. Z. Revesz and C. J.-L. Assi, “Data mining the functional
characterizations of proteins to predict their cancer relatedness,”
International Journal of Biology and Biomedical Engineering, 7 (1),
2013, pp. 7-14.

[8] P. Z. Revesz and T. Triplet, “Classification integration and
reclassification using constraint databases,” Artificial Intelligence in
Medicine, 49 (2), 2010, pp. 79-91.

[9] P. Z. Revesz and T. Triplet, “Temporal data classification using linear
classifiers,” Information Systems, 36 (1), 2011, pp. 30-41.

[10] N. Saitou and M. Nei, “The neighbor-joining method: A new method for
reconstructing phylogenetic trees,” Molecular Biological Evolution, 4,
1987, pp. 406-425.

[11] M. Shortridge, T. Triplet, P. Z. Revesz, M. Griep, and R. Powers,
“Bacterial protein structures reveal phylum dependent divergence,”
Computational Biology and Chemistry, 35 (1), 2011, pp. 24-33.

[12] R. R. Sokal, and C. D. Michener, “A statistical method for evaluating
systematic relationships,” University of Kansas Science Bulletin, 38,
1958, pp. 1409-1438.

[13] T. Triplet, M. Shortridge, M. Griep, J. Stark, R. Powers, and P. Z.
Revesz, “PROFESS: A protein function, evolution, structure and
sequence database,” Database -- The Journal of Biological Databases
and Curation, 2010.

[14] S. Zhang and T. Wang, “A new distance-based approach for
phylogenetic analysis of protein sequences,” International Journal of
Biology and Biomedical Engineering, 3(3), 2009, pp. 35-42.

Peter Z. Revesz holds a Ph.D. degree in Computer
Science from Brown University. He was a postdoctoral
fellow at the University of Toronto before joining the
University of Nebraska-Lincoln, where he is a professor in
the Department of Computer Science and Engineering.
Dr. Revesz is an expert in bioinformatics, databases, data
mining, and big data analytics. He is the author of
Introduction to Databases: From Biological to

Spatio-Temporal (Springer, 2010). Dr. Revesz held visiting appointments at
the IBM T. J. Watson Research Center, INRIA, the Max Planck Institute for
Computer Science, the University of Athens, the University of Hasselt, the
U.S. Air Force Office of Scientific Research and the U.S. Department of
State. He is a recipient of an AAAS Science & Technology Policy
Fellowship, a J. William Fulbright Scholarship, an Alexander von Humboldt
Research Fellowship, a Jefferson Science Fellowship, and a National Science
Foundation CAREER award.

Zhiqiang Li got his B.S. and M.S. degrees from Xidian
University, China, in 2009 and 2012, respectively. He is
currently a Ph.D. student in the University of
Nebraska-Lincoln. His research interests include
bioinformatics, computer security, data mining and image
processing.

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 158

